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Hydrodynamical modes and light scattering in the liquid-crystalline cubic blue phases.
I. Elastic theory
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Light-scattering experiments reveal a strange behavior of thermal excitations in the liquid-
crystalline cubic blue phases. To interpret the experiments we identify the hydrodynamical modes
of the orientational pattern with pure displacements of the order parameter field. There are further
modes that deform the orientational pattern, e.g., local rotations of the order parameter. An in-
vestigation of the elastic free energy shows that our identification of the hydrodynamical modes is
valid as long as the wavelength is much smaller than the lattice constant. In this long-wavelength
limit the additional deformation modes merely renormalize the elastic constants of the displacement
modes. We study the influence of two characteristic deformations, rotational and m = 2 modes, and
discuss the temperature and chirality behavior of the elastic constants. Also Keyes’s [Phys. Rev.
Lett. 65, 436 (1990)] idea of considering the phase transition to blue phase III as a melting of the

cubic blue phases is critically reviewed.

PACS number(s): 61.30.—v, 47.35.+i

I. INTRODUCTION

Blue phases are attracting considerable attention be-
cause they have much more in common with the crys-
talline state than other liquid crystals. The centers of
mass of the molecules do not show positional order, but
the molecular axes align to form a complex long-range
orientational pattern. In the cubic blue phases (BPs) I
and IT this pattern is periodic along all three spatial di-
rections with cubic space group symmetries O% and O?,
respectively. The lattice constant is of the order of sev-
eral hundred nanometers and the unit cell contains 107
molecules. The deviation of the distribution of the molec-
ular axes from isotropy leads to local anisotropic phys-
ical properties, for example, in the dielectric response.
We therefore choose as an order parameter a tensor field
p(r) proportional to the anisotropic part de(r) of the
dielectric tensor £(7r):

p(r) « de(r) = e(r) — % 1tre(r) . (1)

It governs light scattering. The dielectric tensor is sym-
metric and so is characterized by its eigenvectors and
eigenvalues. For a visualization of the tensor field in the
cubic unit cell see Barbet-Massin and Pieranski [1].

The orientational pattern can be deformed in differ-
ent ways. For example, the tensor p(r) may be rotated
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locally, and with it its eigenvectors are rotated. Alter-
natively the directions of the main axes may be kept
fixed and the eigenvalues are changed, altering the de-
gree of the molecular alignment. Also a deformation of
the whole unit cell as in normal crystals is possible. In
this and the following paper [2] we shall deal with the
elastic and dynamic properties of special deformations in
the cubic blue phases, the hydrodynamical modes. We
will see that, in a certain limit, these are described just by
pure displacements of the order parameter p(r). There-
fore they are called displacement modes, equivalent to
acoustic phonons in crystals.

Modes are denoted hydrodynamical (3] if for a plane
wave ansatz

exp(—zt +iq - ) (2)

the relaxation frequency Rez(q) goes to zero and the life-
time [Rez(q)]~! becomes infinite for ¢ — 0. Usually
one finds Rez(g) ~ g2. The lifetime of hydrodynamical
modes is much larger than that of microscopic excita-
tions.

Light scattering from thermally excited hydrodynam-
ical modes is an efficient tool for studying their dynam-
ics. We introduce two methods to identify them [4,5] and
briefly review what one can learn from such experiments.
In an isotropic liquid a frequency analysis of the scattered
light reveals the dispersion relations for three hydrody-
namical modes belonging to two sound waves traveling in
opposite directions and a heat diffusion mode. One can
extract material parameters such as compressibility, lon-
gitudinal viscosity, and thermal conductivity [3,5]. The
three modes result from three conserved quantities: the
mass, the longitudinal component of momentum, and the
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energy. For example, to smooth an inhomogeneous mass
distribution corresponding to a mode of wavelength ),
mass must be transported over a distance of A/2, requir-
ing infinite time as ¢ ~ A~ tends to zero. Not only con-
served quantities but also broken continuous symmetries
lead to hydrodynamical modes, which are then denoted
as Goldstone modes [5]. In the nematic phase, for ex-
ample, the full rotational symmetry of physical space is
broken by the director. A homogeneous rotation of the
director field described by a rotation vector (g = 0)
does not cost any elastic free energy §f, and for spa-
tially modulated rotations [¢(q) # 0] the elastic free en-
ergy 6 f[¢(q)] becomes zero in the long-wavelength limit,
as is the case for the Frank-Oseen free energy. There-
fore there exist large, thermally activated director fluc-
tuations which scatter light strongly. Their relaxation
frequency is proportional to the elastic restoring force
0 fle(q)]/0¢(q) of the director field and also vanishes
with q. The director modes are calculated from the
Leslie-Ericksen equations [6,7]. Using different geome-
tries, one can measure the Frank-Oseen elastic constants
and the viscosities appearing in the dynamical equations
by light scattering experiments.

In periodic liquid-crystalline systems the identification
of the hydrodynamical modes is more complicated be-
cause, in addition, the translational symmetry of phys-
ical space is broken. For the cholesteric phase hydro-
dynamical modes and their equations have been studied
by Lubensky [4]. Further analysis was done in Refs. [8,9]
and the first light-scattering experiments were performed
by Domberger [10].

In 1984 Marcus [11] observed Bragg reflections from
the orientational pattern of the cubic blue phases and
noticed strong fluctuations of the scattered light inten-
sity. These evidently had their origin in thermal modes
which are easily excitable. Candidates are the above
mentioned displacement modes with a hydrodynamical
character due to the broken translational symmetry (Sec.
IT). This light diffraction is equivalent to diffuse x-ray
scattering from acoustic phonons in normal crystals, as
first suggested by Dmitrienko [12]. In further experi-
ments, carried out in forescattering, Marcus [13] and later
Domberger [10] identified two purely diffusive modes.
Surprisingly both authors found finite relaxation frequen-
cies for ¢ — 0 on the order of 1000s~!, an unusual behav-
ior for hydrodynamical modes as pointed out by Marcus
[13]. This puzzle will be studied in the following paper
[2].
We will follow a strategy of three steps: (1) identifi-
cation of the displacement modes with hydrodynamical
modes and investigation of their elastic free energy, (2)
formulation and study of the hydrodynamical equations,
and (3) calculation of light-scattering intensities from the
displacement modes. In this article we deal with the first
step. The second and third steps will be treated in the
following paper [2].

II. DISPLACEMENT MODES

In cubic blue phases the translational and rotational
symmetry of physical space is broken to certain space

group symmetries. For the hydrodynamical modes one
expects a combination of translations and rotations of
the local order parameter p(r). As will become evident
later, only the translational symmetry must be consid-
ered. We introduce a deformed order parameter field
pa(r) by shifting the undeformed order parameter field

u(r):
u(r) — pa(r) = plr —u(r)]; (3)

u(r) is a field of displacement vectors. Restriction to
small displacements gives

Ba(r) = p(r) + dpu(r) = p(r) — [u(r) - Vip(r)  (4)

and the use of the Fourier expansions
p(r) = Z p(k)exp(ik - r) , (5)
k
u(r) = ) u(q)exp(ig - r) (6)

q

(k is a reciprocal lattice vector and g a wave vector sat-
isfying periodic boundary conditions) leads to

Spu(r) = = [iu(q) - klp(k)expli(k + q) - 7] . (7)

q,k

The deviation d gty () from the undeformed order param-
eter field appears as a sum of Bloch functions with wave
vectors q. These are the displacement modes. Our ap-
proximation is valid only for |u(q) - k| <« 1, which is
satisfied for thermal excitations.

With the same procedure we could have introduced the
acoustic phonons for the periodic mass density of normal
crystals, but there is an essential difference. In crystals,
atoms are shifted, i.e., unchangeable quantities which we
can identify in principle before and after a deformation.
On the other hand, if the order parameter p(7) changes
its orientation and shape during the displacement, as ex-
plained in the Introduction, we cannot identify it before
and after and the use of displacement modes makes no
sense. Only if the displacement modes are eigenmodes of
the elastic free energy of the blue phases do they not cou-
ple to other deformations and therefore do not change.

Extending Eq. (7) we introduce a general deviation

Sp(r) = dpu(r) + op(r) (8)

from the undeformed order parameter field p(7) and as-
sume an expansion into Bloch functions:

Sp(r) = du(k + q) expli(k +q) - 7] . (9)
q,k

In addition to the displacement modes the Fourier coef-
ficient

Su(k +q) = dp(k + q) — [iu(q) - klu(k) (10)

now includes further deformation modes expressed by the
amplitude 62(k+q). In Sec. II B we will study the elastic
free energy of such a general deformation. We will show
that to a good approximation the displacement modes
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are elastic eigenmodes if we restrict ourselves to long-
wavelength deformations where the wavelengths must be
much larger than the lattice constant b of the cubic blue
phases:

IS 2n . (11)

b

Nevertheless, coupling to other deformations leads to cor-
rections in the elastic tensor of the displacement modes.
We will study these corrections for special deformations
in the rest of this section. First we briefly summarize the
theory of blue phases.

A. Theory of cubic blue phases

For the thermodynamical description of the blue
phases, a free energy according to Landau-de Gennes
theory is used, in scaled units [14]:

flu) =5 [ @ ( 4+ (V®u) (V ® )

CzK,

2V Vi “(oxn) k) a2)
—\/(_B/dsrtru3+/d3r (trp?)? .

Characteristic parameters are the chirality x, which is
proportional to the wave number ¢. of the cholesteric
helix, the reduced temperature ¢, and the ratio c3/cy of
elastic constants. Throughout we will use a coordinate-
free representation of tensor analysis with the following
notations:

trp® = piipg,

VO ulijr = Wik »
! 13
(Vul; = pij, (13)

(VX ulin = €iiptin,g »

where €;;; are the components of the Levi-Civita tensor
erc. The dot between two tensors always stands for a
contraction over all indices from left to right and the
comma means partial derivative.

The minimization of the free energy starts with the
Fourier expansion (5) of the order parameter field p(r).
The Fourier coefficient p(k), also a symmetric and trace-
less tensor of second rank, is written in a spherical tensor
basis [15]:

2

u(k) =" pm(k)

m=—2

M (k) . (14)

Thus p(r) is expanded into tensor modes of helicity m.
For later use we give the definition of My (k):
M, (k) =m(k) @ m(k) ,

m(k) = %(£+in),

(15)

where {§,7n,k/k} is a right-handed system of orthonor-
mal vectors.

When the order parameter field possesses a space
group symmetry G, it is useful to subdivide the sum over
the k vectors in Eq. (5) in the following way:
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=D > D km(Skp)Mn

kn SEP(kr)m=—2
x exp(tSkgr - 7) . (16)

(Skr)

kg is the representative of a star of k vectors which
is constructed by application of all elements S of the
point group P, for example, the cubic point group O, to
kr. In special stars the number N(kg) of k vectors is
smaller than the order of the point group and only a sub-
set P(kr) of P is needed for the construction. Because
of the invariance of the order parameter field:

[{SIt}ul(r) := Su({S|t}~'r) = u(r) (17)

(S is the symbol for the rotated p), there is only one in-
dependent complex amplitude p,,(kg) for each star and
each helicity m. If k and —k belong to the same star,
the phase factor of the complex amplitude is fixed up to
a sign because the order parameter is real [16].

An exact minimization of the free energy (12) is cur-
rently not possible. In our quantitative discussion we
use the results of the high chirality limit, i.e., for kK — oo.
A separate consideration of the elastic part in the free
energy reveals that modes of helicity m = 2 or —2 are
favored [15]. The amplitudes us(kg) together with the
lattice constant b, which is comparable to 2w /g, follow
from the minimization of the entire free energy for a
restricted number of stars. With this method Grebel,
Hornreich, and Shtrikman (GHS) [14,15,17] could repro-
duce the phase diagram of the cubic blue phases, the
control parameters being the temperature ¢t and the chi-
rality k. For the space groups O2 of BP Il and O® of BP I
they had to take into account the two stars (100) and
(110) and the four stars (110), (200), (112), and (220),
respectively.

B. Elastic free energy

The elastic free energy 6 f of a deformed order param-
eter field pq(r) = p(r) + op(r) is

6f = flpa(r)] = flu(r)] - (18)

With the free energy of Eq. (12) we obtain up to second
order in dpu(r)

CzK

5f ~ /d3 ( trlou?] + ooy (vmu) (V ®6p)
C1 2(]2

) (o)
—3\/—6/d37' tr[p op?)
+/d3r {4(tr[u6u])2 + 2tr[6p?) tr[p.z]} .

The integration is carried out over the volume V of the
system with periodic boundary conditions. The term lin-
ear in dpu(r) must vanish because p(r) minimizes the
free energy (12). With the Fourier expansion (5) there
follows, as the condition for an extremum,
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2

tulk) + k() + & (k ® (k) + u(k)ke & k  Sir{(k © K)ua)] 1) - L (ko k) + e it |

Co
c1 2‘13

N =

~3v6Y [p.(k — k) u(k') — %tr[u(k — k") (k)] 1} +4 3 trfu(k — k' — k") (k)] p(k") = 0. (20)
-

k' k"

This takes into account that p(k) is a traceless tensor.
We now introduce the general deformation of Eq. (9) for §u(r). The evaluation of § f needs tensor manipulations,
permutations of k vectors, and the application of condition (20). After lengthy calculations we obtain

Of = O fuu—+Ofspu+0fspsi (21)

with the three terms

fun= 5 X g { lur(-m]1 + E (k) | o ko] -le@ g B ula) 0u' (@] (22)

k,q

2

L > |55 { 2l kyate + @)1+ 2 [5706 + q)us(—k) + (~R)3aCk + @) frak

+1 2'22 eLV[.,p(~k)6ﬁ(k + q)] ® k] -lg®u*(q)], (23)
Honsn =y 3 { 5Bl + Ok + 0)] + 75 ((k + ) © 5alh + @)l [(k + a) & 53" + )]
k,q
+“’—2§—2[6u(k +a)(k + )] - (65" (k + q)(k + 9)] - zj—z[(k + ) x fi(k + @) - 6" (ke + q>} (24)
=3V6V D tr[pu(k")5H(k + q)0R" (—k' + q)]
Ak=0,q
na> {zm[u k")8i(k + q)] tr[pu(k" )" (—k' + q)] + 2tr[57i(k + q)0* (— k' + q)] tr[u(k”)u(k”’)]} .
Ok=0,q

Here we use the symbols Ak = k + k' + k" and Ok = k + k' + k" + k"'. The elastic free energy does not contain
any coupling between deformation modes of different wave vectors g because of the long-wavelength limit (11) and
the restriction to second order in §u. In the following arguments the order of g plays an important role. g always
appears relative to ¢. and according to the condition (11), ¢/g. is a very small number. §f, 4, the elastic free energy
of pure displacement modes, contains g only in second order as expected from the broken translational symmetry.
0fsn,sa, the elastic free energy of further deformations, and 6 fsz ., which describes the coupling to displacement
modes, depend on g in zeroth and first order, respectively. If we introduce a large column vector Afi(q), comprising
all the components of §z(k + q) of all k vectors, § f can be rewritten in a Hermitian form:

Au(g® q) W(q)+0(q®q) ) ( u*(q) ) (25)

u(q)
T2 Z ( Ap(q) ) ' ( Wi(g) + O(g®q) @ + 0(q) AR’ (q)

The Hermitian block matrix contains the elastic ten-
sors A, and @, the coupling tensor W, and further ten-
sors O of higher order in q, as indicated by the argu-
ments q and g ® g. W is the symbol for the Hermitian
conjugate tensor of W. We now calculate the elastic
eigenmodes, but only to the lowest order in gq. With the
unitary transformation

- 1 -W(q)®!
U= (wawe "1 ). @

the coupling tensor W (q) is eliminated. The variables

u(q) and Azi(g) do not mix, whereas the elastic tensor
Au(g ® q) is renormalized:

A(@®q) =Au(g®q) — W(q)O®@ 'Wi(q) . (27)

The elastic free energy is then
~Y u(q) Ag®q) O(@®aq)
5f~2zq:<Au()) <O(q®t1) ® )

x (:I;S?;)) . (28)
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A calculation of the eigenvalues of the new block ma-
trix, using the definition for the determinant, shows that
a further diagonalization can be performed for A(q ® q)
and © separately. So we can state the following impor-
tant result: The hydrodynamical modes of the cubic blue
phases are identical to the displacement modes for small
wave vectors gq. Thus we can restrict ourselves to the
displacement field u(r), as the hydrodynamical variable,
to describe their dynamics.

Finally, we present the full form of the elastic tensor
A(g®q). Restriction to m = 2 modes for the undeformed
order parameter in the elastic free energy 6f, . of Eq.
(22) leads to

Sfu,u =5 ZA

[g®q®u(q) ®u*(q)] (29)

with

Ztm(kR "y ”;

[ ® Skr ® Skr
P(kr) ¢

+28mp ® Smi, ® Skr ® SkR] . (30)
C1

Ay is a tensor of rank four, invariant under cubic point
operations. Its general form is

3
Au:/\u1®1+(Au+Ai¢)1_(g4)+)\K,HZP1®P1 ’

=1

(31)

1(54) denotes the symmetrized identity tensor of rank four
with the components
1
4

1550 = E(éikfsjl + 6110 1) (32)
and P; = e; ® e;, a projector on one of the fourfold
axes whose directions are given by the unit vectors e;.
Ay and A, are Lamé’s constants for an isotropic elastic
solid. Ag , is the third elastic constant, allowed by cubic
point symmetry and a measure of the elastic anisotropy.

Ax(g ® q) follows from A, by contraction over the first
two indices:

Au(@®q) :=Au(q,q, -, .)
= A@®1+ A +A)g®q (33)
3

+AK,u Z(PiQ)zpi

=1

with the elastic constants

M= ZN (k)i 25 (34)
Nae ——ZN (k) ()2 2 [1+ f(kR)] . (35)
Ak ZN(kR s k) S22 phm) . (36)

Here the abbreviation

h2k2 + h21% + k212

fkr) = (h2 + k2 + [2)2

(37)

is used, where (hkl) are the components of kg.

In the following two subsections we study the correc-
tions to the elastic tensor A, (g®q) for two characteristic
deformation modes in the blue phases.

C. Coupling to rotational modes

Local rotations of the — in general biaxial — order
parameter u(r) are a generalization of director modes
in the nematic phase. They are favored by the free en-
ergy (12) in the low chirality limit K — 0 because only
the elastic terms contribute to rotations of u(r). We in-
troduce the deformed order parameter field pq(r) as a
displacement of u(r) followed by a rotation:

= R[S(r)] u(r — u(r)) R [S(r)] .
(38)

u(r) — pa(r)

R[S(r)] is the rotation operator
R[S(r)]~1+¢(r)x , [p(r)x];

in which we have restricted ourselves to small rotations -
[18]. ¢ () denotes a vector whose direction and modulus

are given by the local rotation axis and the angle of ro-

tation, respectively. Up to first order it follows from Eq.

(38) that

=i (39)

pa(r) = p(r) — [u(r) - Vip(r) + [p(r)x, u(r)] . (40)
The symbol [.,.] stands for a commutator. Using the
Fourier expansion

r) = Z w(q)exp(iq-r) , (41)
q

we finally obtain the Fourier coefficients of the rotational
modes

sp(k +q) = [p(q)x, u(k)] . (42)

They are used to calculate d f, ., and 6 f,, , from Eqgs. (23)
and (24), the index 0z being replaced by ¢. Restriction
to m = 2 modes in the undeformed order parameter field
yields the result

0fpe =Vep Z I‘P(Q)lz ) (43)

Slon=—iVe, Y erv - la@p(a) 0u'(a)],  (44)
q
with the constant

K2 k
o= g SN Gmlalhml* |14 5
R

cz kr

- ] (45)

0fp,p and 6f, . contain the only tensors invariant under
cubic point operations: the unit tensor 1 of second rank
and the Levi-Civita tensor e5y. The difficult task was to
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determine the constant c,. In our compact formulation
(25) of 6 f we have to replace Afi(g) by ¢(q) and we can
identify the coupling tensor W, ,, and ©,, , with

W(p,u = thp,u _ictpsLV(Qa (X ) ) (46)
O, =2c,1 . (47)

The correction A,(g ® q) to Ay(g ® q) follows from Eq.
(27):

A (@®q) = -Wou(9)O, LW, ,(q)

=@’ 1+ (Ao +A,)q®q (48)
with the elastic constants
1
Ap = —3%% > Ao = Cp, Ak, =0 . (49)

A, (g ® q) contains only isotropic terms.

®,,, does not vanish for ¢ — 0. Therefore the ro-
tational modes are not hydrodynamical modes, in con-
trast to the director modes of the nematic phase. The
reason is the lattice structure of the cubic blue phases,
which leads to inequivalent directions, the crystallo-
graphic axes. Changing the orientation of p(r) relative
to these directions requires energy. We can compare the
situation to ferromagnetic cubic crystals. There are the
directions of easy magnetization, for example, the four-
fold axes. Changing the orientation of the magnetization
needs the magnetocrystalline energy [19].

D. Coupling to m = 2 modes

Modes of helicity m = 2 are characteristic for the
structure of the blue phases as explained in Sec. II A.
‘We therefore introduce further deformation modes by re-
stricting the Fourier coefficient 6z2(k + q) to the helicity
m=2:

57i(k + q) = 8z (k + q) M(k + q) . (50)
With the approximation
M;(k + q) ~ M2 (k) , (51)

due to our limitation g < k, it follows that

|4 ~ ~x
Sf22% 5 DD [@aaliw 6ia(k + @) 53 (K +q) ,
9 k&'
(52)

3
ham g T3 S AW an@liaus(@sF e +

W (@) 875l + q)u;(q)} (53)

with the components of the tensors @32 and W ,(q)
given by

t 2 2
(©aaluwr = (5 + 307k = ") B — OVE lMa(k)Ma(—k)Ma(k' — k)a (i — )

k'

+ Z{Str[Mz(k")Mz(k)] tr[My(k' — k — k') M3 (—k')] (54)

+4tr[ M 5 (k) Mo (—k')] tr[ M (k") My (k' — k — k“)]} pa (k") pa (k' — ke — k") |

Wau(@)lin = —2q— p2(k)

Cc

The indices of the components [('32,2};,,;,', k and K/,
cover all the k vectors which we take into account for
the deformation modes. Like for the displacement and
rotational modes, we consider all k vectors which are
used to construct the undeformed order parameter field.
If the amplitudes po (k' — k) and pa(k’ — k — k") belong
to higher stars, they are chosen to be zero in agreement
with the results of GHS [17]. The index j of [W3 4(q)];
ranges from 1 to 3, according to the three components of
the displacement vector u, while the index k is handled
as explained above. Again we introduce a column vector

82 (k™ + q)
Aﬁz(?) = (56)
6ii2(k™ + q)

and write the elastic free energy in the compact form

(1-%)k-at (55)

% ; ( Auz(Q) ) ( ,\V;’(zf(’qq)) W(;’:,iq) )

( Auga) ) ' (57)

The correction
A2(g®q) = ~W2u(q) ;3 Wi (a) (58)

of the elastic tensor involves too complex quantities for an
analytic evaluation to be possible. Nonetheless A2(g® q)
has to reflect the cubic point symmetry of the blue phases
and therefore has the form

A20@®q) = A2¢°1+ (M2 + M)g®q

3
+Ak,2 Z(PiQ)ZPi . (59)

=1
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The elastic constants Az, A3, and Ak 2 are determined
numerically for each set of parameters « and ¢ and the
corresponding amplitudes p2 (k).

E. Coupling to rotational and m = 2 modes

In a last step we admit both the rotational and m = 2
modes as deformations in addition to the displacement
modes and introduce the Fourier coefficient

sk + q) = [p(q)x, u(k)] + dp2(k + q) M2(k + q) .
(60)

The different contributions to the elastic free energy (21)
J

v u(q) Au(g®q)
§f =5 ¢(q) Wff,u(q)
7 \ AR,(9) W, .(9)

The corrected elastic tensor for the displacement modes
follows from

A(@®q) =Au(@®q) — (Wyu(q) W2 u(q))
O, O(q) - Wi .(a)
* (0<q> ©2,2 ) ( W} .(a) )
(65)

For the inverse block matrix we need only the zeroth
order in q:

(5w o) -(Gwed) o

The corrections turn out to be additive:

A(@®q) =Au(g®9q) +Ap(g®q) + A2(g®q) . (67)

F. Symmetry aspects

In this last subsection the symmetry properties of the
elastic free energy of the displacement modes are inves-
tigated. This will help us to find eigenmodes with a spe-
cial polarization, say, transverse and longitudinal modes.
The elastic free energy reads

Sun= 5 Y A@®Q) [wl@@u' @] . (69)

The elastic tensor A(q @ q) follows from a tensor A of
rank four with cubic point symmetry

3
A=221 +N1®1+ Ak Y P;®P;

i=1

(69)
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are

6f6i‘,u ~ 6f&p,u + 6.f2,u ’ (61)

0fonbn ~ 0fpp +0f22+0fp2 . (62)
All terms are known except for é f, 2, which describes the
coupling between rotational and m = 2 modes. When
the undeformed order parameter is restricted to m = 2
modes it contains g only in first order:

6fp2=0(q) . (63)
The elastic free energy is then
W u(g) Wau(q) u*(q)
O O(q) <P:£‘I) (64)
O(q) O, Aps(q)

by contraction:
Ag®q):=Ag, .,q, .)

3
= A1+ (A+X)g®q+ Ak Y (Pig)*P; .
i=1

(70)

Note that we have chosen slightly different definitions
compared to Egs. (31) and (33) to get the same form of
A as in the linear elastic theory of solids. A is invariant
under operations of the cubic point group Oy, which also
contains reflections, in contrast to O, the point group of
the blue phases. In a symbolic notation this reads

SA=S8, Sco. (71)

The eigenvectors of A(q ® q) are calculated as usual:
A(g ® q) u(q) = Aerq” u(q) , (72)

where A.g is the effective elastic constant of the eigen-
mode {q,u(q)}. We investigate the rotated eigenvalue
problem

S[A(q ® q) u(g)] = Aewq” Su(q) - (73)
In components one can show, using Eq. (71), that
A(Sq ® Sq) Su(q) = Aerrq® Su(q) - (74)

The last equation can also be proven by considering A, q,
and u as geometrical objects and by applying the rotation
step by step:

S5[A(g ® 9) u(q)] = S[A(g ® q)] Su(q)]
= [SA](Sq ® Sq)] Su(q)] -
In addition to the eigenmode {q,u(q)} we have found a

second one {Sq, Su(q)} with the same effective elastic
constant.

(75)
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TABLE I. Wave vectors ¢ with a nontrivial little group X(q) and their possible longitudinal
and transverse eigenmodes. The eigenvector u(q), the effective elastic constant, and the degree
d of degeneracy are listed. The polarization p of the eigenmodes is abbreviated by ! and t for
longitudinal and transverse, respectively.
K(q) q p u(q) Aest d
Cav e; l e 22+ X + Mg 1
t cos ez + sin Pes A 2
Cs. (e1+ez+es)/V3 ! (e1+ez+e3)/V3 22+ X + Ak /3 1
t t* A+ Ak/3 2
Cay (81+82)/\/§ l (e1+e2)/\/§ 2)\+A’+AK/2 1
t (e1 —e2)/V2 A+ Ak /2 1
t (X3 A 1
C, cos Pe; + sin Pe t es A 1
C, cos ®(e1 — e2)/+/2 + sin Pes; t (e1 +e2)/V2 A+ cos® ®Ak /2 1
®t = cos ®(e1 — e2)/v/2 + sin ®(e1 + ez — 2e3)//6.
We now restrict ourselves to special wave vectors q X =L + Al ot A4
invariant under a subgroup of Oy, the lttle group K(q)
of g. With Sq = q we get, from Eq. (74), =—— ZN (kr)|p2(kr)|? —% (1 + — f(kR)
kr c
A(g ® q) Su(q) = Aesrq® Su(q) . (76) e 20 g, (78)
kR 26]_
If Su(q) # *u(q), there exists a second eigenmode A = )‘ A
{q,Su(q)} to the degenerate eigenvalue Aegq?. Reduc- K = 2Ku T AK2
ing this degeneracy leads to transverse and longitudinal _ k- N(k k _R 22 f(kr)+ A (79
eigenmodes. Consider, for example, g parallel a fourfold Z (kr)luz( »)I* 3 c1 f(kz) xz - (79)

axis. Applying all possible rotations to u(q) yields, in
general, three linear independent eigenvectors. One can
reduce the degeneracy if one chooses one eigenvector par-
allel to g and a plane of eigenvectors perpendicular to q.
Then the effective elastic constants can easily be calcu-
lated using Eq. (70). In Table I we list all wave vectors q
with a nontrivial little group X(q) and their possible lon-
gitudinal and transverse eigenmodes. It shows the eigen-
vector u(q), the effective elastic constant, and the degree
d of degeneracy. The polarization p of the eigenmodes is
abbreviated by ! and t for longitudinal and transverse,
respectively. We will refer to this table when we discuss
the elastic properties of the displacement modes in the
next section.

III. DISCUSSION

The elastic constants for the displacement modes in-
cluding all corrections are

A=Ay + A+ A2

The corrections due to the rotational modes are writ-
ten in square brackets. All effective elastic constants of
the longitudinal modes contain the combination 2\ + X’
(Table I). Together with Egs. (77) and (78) we notice
that A\.g does not involve any correction from rotational
modes.

The temperature behavior of the effective elastic con-
stants A+ Ax/2 and 2A+ X' + Ak /3 of a transverse and a
longitudinal mode, respectively, is shown in Figs. 1 and

0.7 T T T T T T T T T
Q@ O]
5y I
0.6 « qu,oe :<.>
0.5
0.4
0.3

effective elastic constant

0.2 [®®%e0eee,, 7
0.1} e

0 2 1 L ! L L 1 1
-1 05 0 05 1 1.5 2.5 3.5 4

. 2
_= 25 (1o
=% kz:N(kR)Luz(kRH a2 (1 [kR + 201])

+A2 , (77)

temperature ¢

FIG. 1. Temperature behavior of the effective elastic con-
stant A+Ak /2 with different corrections: 1, pure displacement
mode; 2, with the correction from m = 2 modes; 3, with the
correction from rotational modes; 4, with both corrections.
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FIG. 2. Temperature behavior of the effective elastic con-
stant 2\ + X' + Ak /3 with different corrections: 1, pure dis-
placement mode; 2, with the correction from m = 2 modes.

2. We choose c3/c; = 0.5 [20,21] and « = 1.8. The chiral-
ity is too high compared to the experiments [17], but for
this value the phase sequence BPI — BPII — isotropic
liquid is realized in the phase diagram of GHS [17]. The
first curve shows the elastic constant for a pure displace-
ment mode. The second and third (only in Fig. 1) take
into account the corrections from m = 2 and rotational
modes and the fourth (only in Fig. 1) includes both cor-
rections. All curves have negative curvature. We notice
that A.g is decreased by the additional deformations be-
cause these make the orientational pattern softer. The
rotational modes lower the elastic constant by a factor
2.5. The corrections due to the m = 2 modes are much
smaller. They are more significant in BP I and therefore
Aesf displays a jump to higher values at the phase tran-
sition BPI — BPII. The jump is not so large when we
only look at A because Ag has different signs in BPI and
IT (Fig. 4). Since the rotational modes have no influence
on the elastic constants of the longitudinal mode A g is a
factor 2 — 3 larger than for transverse modes. A chirality
Kk =~ 0.8 fits the experiments better [17]. Here we find
values of 0.01 for the scaled elastic constants. Using the
estimate 3%/36v% ~ 10° ergs/cm? for the scaling factor of
the free-energy density [22] gives a value of 1000 ergs/cm?
for the elastic constant which is a factor 10° smaller than
in normal crystals.

Figure 3 shows the chirality behavior of three effective
elastic constants. Equations (77)—(79) suggest first that
they are proportional to x2, but the amplitudes pa(kr)
depend also on k, and this fact makes the situation more
complicated. For A we find by a fit to K an exponent
3.44 instead of 2. The other elastic constants have larger
exponents. We emphasize this point because Keyes [23]
argues that the phase transition to the blue fog, which
only appears at high chiralities, can be understood as
a melting of the cubic blue phases at high chiralities.
Therefore he calculates the mean square displacement

~

b Aeff

(80)

of the orientational pattern following the Landau-Peierls
estimate. Assuming A.g ~ x2, the mean square displace-
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FIG. 3. Chirality behavior of effective elastic constants
with both corrections. The solid line is a fit to «°.

ment increases with x and the cubic blue phase melts ac-
cording to the Lindemann melting criterion. Our result
seems to contradict this argument because Aog ~ k344
leads to the opposite behavior. However, we have to re-
member that for increasing chirality the phase transition
from the cubic blue phases to the isotropic liquid (the
blue fog appears somewhere between) takes place at in-
creasing temperatures, i.e., A.g decreases. If we take this
point into account, there are hints that the mean square
displacement shows the behavior as suggested. Recently
calculations were presented which identify the blue fog as
a liquid of purely cubic bond orientational order (cubatic
phase) which remains when the cubic blue phases melt
[24].

Figure 4 shows the temperature behavior of A’ and Ag
relative to A. The effective elastic constant A must be
positive to ensure the stability of the elastic free energy.
The temperature dependence in the BP I is stronger than
in the BPII. Ax /), which is a measure of the anisotropy
of the elastic properties of the cubic blue phases, has a
negative sign in the BPI and changes sign at the phase
transition. In the BPII the elastic anisotropy is larger,
but nevertheless we can consider it as small.

Mechanical experiments were performed in polycrys-
talline materials to measure an average shear coefficient
[25-27]. The values lie in the same order of magnitude
proposed by the theory. The experimental curves of

0.8 ———
COOOCOXT T =05 k= 1.8
g 06F OBV ]
g8 o04r e
£
% 020 BPI BP II iso]
5
¢ 0
g oooo... N/A: O
& -02r soe MRS
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temperature ¢

FIG. 4. Temperature behavior of the elastic constants A’
and Ak relative to A with both corrections.
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Kleiman et al. [27] for the temperature behavior show
a negative curvature as predicted by the theory, but in
contrast to the results of Cladis et al. [26] and Clark et
al. [25]. They also find a jump of the shear coefficient to
higher values at the phase transition BPI — BPII.

A measurement of all three elastic constants requires
a monocrystal of the cubic blue phases. The investiga-
tions by mechanical experiments are too rough because
they destroy it. Therefore more subtle methods such as
light scattering experiments must be used. Rakes and
Keyes [28] measured the Debye-Waller factor [29] of dif-
ferent Bragg reflections. From these measurements one
can only extract an estimate for the elastic constants
because the Debye-Waller factor depends on the whole
wave vector range of the excitation spectrum. Thus we
have to rely on the scattering experiments of Marcus and
Domberger. They can answer the interesting question
about the amount of the elastic anisotropy in the cubic
blue phases. Further, we have made an important step

towards understanding the dynamic behavior of the blue
phases, the signs of which are hidden in the fluctuating
scattered light intensity. With the displacement modes
we have identified the origin of the fluctuations and we
also know that the displacement field w(r) has to appear
in the hydrodynamical equations, at least for small wave
vectors q. In the following paper [2] we will therefore use
dynamical equations known from colloidal crystals [25]
to analyze the dynamics of the displacement modes and
of the light-scattering experiments. The same equations
were also used by the groups which performed the above
mentioned mechanical experiments [25-27].
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